111. Minimum Depth of Binary Tree

思路1: 递归,分类讨论

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution:
def minDepth(self, root):
"""
:type root: TreeNode
:rtype: int
"""
# 6 star, 分类讨论的情形比较巧妙,一开始做错了
# todo, 需要掌握
if not root:
return 0
return self._minDepth(root)

def _minDepth(self, node):
if not node.left and not node.right:
return 1
elif node.left and node.right:
return min(self._minDepth(node.left), self._minDepth(node.right)) + 1
elif node.left:
return self._minDepth(node.left) + 1
else:
return self._minDepth(node.right) + 1

Go:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
func minDepth(root *TreeNode) int {
if root == nil {return 0}
if root.Right == nil && root.Left == nil {return 1}
queue := []*TreeNode{root}
depth := 0
for len(queue) > 0 {
depth += 1
nextLevel := []*TreeNode{}
for _, node := range queue {
if node.Left == nil && node.Right == nil {return depth}
if node.Left != nil {nextLevel = append(nextLevel, node.Left)}
if node.Right != nil {nextLevel = append(nextLevel, node.Right)}
}
queue = nextLevel
}
return depth


}

思路2: bfs, 在广度优先遍历的过程中,每遍历一层就高度加一,如果某一个节点是叶子节点,那么当前的高度就是最小高度。

Python:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution(object):
def minDepth(self, root):
"""
:type root: TreeNode
:rtype: int
"""
if root is None:
return 0
depth, curr_level = 0, [root]
while curr_level:
depth += 1
next_level = []
for n in curr_level:
left, right = n.left, n.right
if left is None and right is None:
return depth
if left:
next_level.append(left)
if right:
next_level.append(right)
curr_level = next_level
return depth